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Introduction
In recent years, the dynamic panel data literature has begun to focus on panels 

in which the number of cross-sectional observations ( N ) and the number of time-se-
ries observations ( T ) are both large. The availability of data with greater frequency 
is certainly a key contributor to this shift. Some cross-national and cross-state data 
sets, for example, are now large enough in T such that each nation (or state) can be 
estimated separately. See Blackburne and Frank, (2007) for further details.

The asymptotics of large N, large T dynamic panels are quite different from 
the asymptotics of traditional large N, small T dynamic panels. Small T panel estima-
tion usually relies on fixed or random effects estimators, or a combination of fixed 
effects estimators and instrumental variable estimators, such as the Arellano and 
Bond, (1991) GMM estimator. These methods require pooling individual groups and 
allowing only the intercepts to differ across the groups. One of the central findings 
from the large N, large T literature, however, is that the assumption of homogeneity 
of slope parameters is often inappropriate. This point has been made by Pesaran 
and Smith (1995); Im et al. (2003), Pesaran et al; (1997, 1999), Phillips and Moon, 
(2000)1.

With the increase in time observations inherent in large N, large T dynamic 
panels, nonstationarity is also a concern. Recent papers by Pesaran et al. (1997, 1999) 
offer two important new techniques to estimate nonstationary dynamic panels in 
which the parameters are heterogeneous across groups: the mean-group and pooled 
mean-group estimators. The mean-group estimator (MG) (see Pesaran and Smith, 
1995) relies on estimating N time series regressions and averaging the coefficients, 
while the pooled mean-group estimator (PMG) (see Pesaran et al., 1997,1999) relies 
on a combination of pooling and averaging of coefficients.

1 For further discussion of this literature see chapter 12 in (Baltagi, 2001).
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In recent empirical research, the MG and PMG estimators have been applied 
in a variety of settings. Freeman, (2000), for example, uses the estimators to evaluate 
state-level alcohol consumption over the period 1961 to 1995. Martinez-Zarzoso and 
Bengochea-Morancho, (2004) employ them in an estimation of an environmental 
Kuznets curve in a panel of 22 OECD nations over a period 1975 to 1998. Frank, 
(2005) uses the MG and PMG estimators to evaluate the long-term impact of income 
inequality on economic growth in a panel of U.S. states over the period 1945 to 
2001.

This paper applies the MG and PMG estimators to a panel of OECD nations 
for the years 1970–2004. We present a simple dynamic model of oil consumption as 
a function of income and prices. As in previous studies, we allow demand to respond 
asymmetrically to price shocks. Specifically, this paper has three goals: 

•	� test the degree of heterogeneity in oil consumption among the OECD  
nations 

•	test the asymmetric response of oil consumption with respect to price 
•	estimate precise price and income elasticities for OECD oil consumption 

This paper proceeds as follows. Section 2 discusses the methods involved, 
including price decomposition and alternative dynamic panel estimators. Section 
3 briefly describes the data. Section 4 presents the results and Section 5 concludes.

Methodology

Demand Asymmetries

 Following the recent work of Gately and Huntington, (2002), this paper al-
lows for asymmetric price response in oil demand. Models that assume price sym-
metry when, in fact, it does not exist introduce model misspecification and down-
wardly bias income elasticity estimates. Accordingly, we decompose the world price 
of oil (in logs), Pt , into three components: 

describes the data. Section 4 presents the results and Section 5 concludes.
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Pcut,t =
T∑
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Pmax,t and Prec,t are non-decreasing series while Pcut,t is non-increasing. Figure 1
presents the decomposed real oil price series for the period 1970-2004.

The decomposition of price listed above is convenient since it allows for simple testing
of symmetric consumption responses to price changes. At any point in time, the
following identity holds:

Pt = Pmax,t + Prec,t + Pcut,t (4)

Given a simple demand model of the form

qt = α + β1Pmax,t + β2Prec,t + β3Pcut,t + εt (5)

the null hypothesis of price response symmetry is tested as β1 = β2 = β3. Under
the alternative hypothesis of price asymmetry, at least one βi is statistically different.
Prior research convincingly argues that |β1| > |β2| > |β3|. Our results partially
confirm this.
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Oil Demand Model
We estimate a reduced form energy demand model where per capita oil de-

mand is a log-linear function of the real price of oil (which is common across all 
countries) and real per capita GDP.

Assume the long-run demand function 

2.2 Oil Demand Model

We estimate a reduced form energy demand model where per capita oil demand is a
log-linear function of the real price of oil (which is common across all countries) and
real per capita GDP.

Assume the long-run demand function

qit = θ0i + θ1ipt + θ2iyit + µi + εit (6)

where the number of nations i = 1, 2, . . . , N , the number of time periods t =
1, 2, . . . , T , qit is the log of per capita oil consumption (million tonnes), pt is the
log of real price of oil (2006$ per barrel), and yit is the log of real per capita income.
If the variables are I(1) and cointegrated, then the error term is I(0) for all i. The
ARDL(1,1,1) dynamic panel specification of (6) is

qit = δ10ipt + δ11ipt−1 + δ20iyit + δ21iyi,t−1 + λiqi,t−1µi + εit (7)

The error correction re-parametrization of (7) is

∆qit = φi (qi,t−1 − θ0i − θ1ipt − θ2iyit) + δ11i∆pt + δ21i∆yit + εit (8)

where φi = −(1− λi), θ0i =
µi

1−λi
, θit =

δ10i+δ11i
1−λi

, and θ2i =
δ20i+δ21i

1−λi
.

The error-correction speed of adjustment parameter, φi, and the long-run coef-
ficients, θ1i and θ2i are of primary interest. One would expect φi to be negative if
the variables exhibit a return to long-run equilibrium. Economic theory indicates the
long-run price elasticity, θ1i, should be negative and the long-run income elasticity,
θ2i to be positive. Further, to allow for price asymmetries, we substitute the price
decomposition from equation (1) above.

2.3 The Mean-Group and Pooled Mean-Group Estimators

The recent literature on dynamic heterogeneous panel estimation in which both N
and T are large suggests several approaches to the estimation of equation (8). On
one extreme, a fixed effects (FE) estimation approach could be utilized in which the
time series data for each group is pooled and only the intercepts are allowed to differ
across groups. If the slope coefficients are in fact not identical, however, then the
FE approach produces inconsistent and potentially misleading results. On the other
extreme, the model could be estimated separately for each individual group, and a
simple arithmetic average of the coefficients could be calculated. This is the mean-
group (MG) estimator proposed by Pesaran and Smith (1995). With this estimator,
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the intercepts, slope coefficients, and error variances are all allowed to differ across 
groups.

More recently, Pesaran et al., (1997), Pesaran et al., (1999) have proposed 
a pooled mean-group (PMG) estimator that combines both pooling and averaging. 
This intermediate estimator allows the intercept, short-run coefficients, and error 
variances to differ across the groups (as would the MG estimator), but constrains 
the long-run coefficients to be equal across groups (as would a FE estimator). Since 
equation (8) is nonlinear in the parameters, Pesaran et al., (1999) develop a maxi-
mum likelihood (ML) method to estimate the parameters.

Expressing the likelihood as the product of each cross-section’s likelihood 
and taking the log yields: 
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The mean-group parameters are simply the unweighted means of the individual
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coefficient, φ, is:

φ̂ = N−1

N∑
i=1

φ̂i (11)

with the variance

∆̂φ̂ =
1

N(N − 1)

N∑
i=1

(φ̂i − φ̂)2 (12)

The mean and variance of other short-run coefficients are similarly estimated2.

3 Data

We use annual aggregate data for 27 OECD nations to estimate the oil demand
model in equation (8)3. These data are taken from Alan Heston and Aten (2006);
IEA (2006), and encompass the years 1970 through 2004. Summary statistics for
the data are listed in Table 1. Figure 2 shows oil consumption (million tonnes) and
income (real GDP per capita) for the 27 OECD countries in our sample.

Although we expect OECD countries, as a whole, to be a homogeneous group,
our estimation procedures do not impose parameter homogeneity. At one extreme,
the mean-group estimator allows for complete heterogeneity while the dynamic fixed
effects estimator imposes parameter homogeneity across all countries. As a com-
promise, the pooled mean-group estimator allows for country-specific short-run ad-
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The mean-group estimator is the least restrictive of all estimations we consid-

er. Model (8) is estimated independently for each country via ordinary least squares. 
The country-specific regression estimates for the mean-group model are listed in 
Table 5.

The estimated (instantaneous) income elasticity of .636 is quite plausible. 
Further, the long-run adjustment parameter, 

2.2 Oil Demand Model

We estimate a reduced form energy demand model where per capita oil demand is a
log-linear function of the real price of oil (which is common across all countries) and
real per capita GDP.

Assume the long-run demand function

qit = θ0i + θ1ipt + θ2iyit + µi + εit (6)

where the number of nations i = 1, 2, . . . , N , the number of time periods t =
1, 2, . . . , T , qit is the log of per capita oil consumption (million tonnes), pt is the
log of real price of oil (2006$ per barrel), and yit is the log of real per capita income.
If the variables are I(1) and cointegrated, then the error term is I(0) for all i. The
ARDL(1,1,1) dynamic panel specification of (6) is

qit = δ10ipt + δ11ipt−1 + δ20iyit + δ21iyi,t−1 + λiqi,t−1µi + εit (7)

The error correction re-parametrization of (7) is

∆qit = φi (qi,t−1 − θ0i − θ1ipt − θ2iyit) + δ11i∆pt + δ21i∆yit + εit (8)

where φi = −(1− λi), θ0i =
µi

1−λi
, θit =

δ10i+δ11i
1−λi

, and θ2i =
δ20i+δ21i

1−λi
.

The error-correction speed of adjustment parameter, φi, and the long-run coef-
ficients, θ1i and θ2i are of primary interest. One would expect φi to be negative if
the variables exhibit a return to long-run equilibrium. Economic theory indicates the
long-run price elasticity, θ1i, should be negative and the long-run income elasticity,
θ2i to be positive. Further, to allow for price asymmetries, we substitute the price
decomposition from equation (1) above.

2.3 The Mean-Group and Pooled Mean-Group Estimators

The recent literature on dynamic heterogeneous panel estimation in which both N
and T are large suggests several approaches to the estimation of equation (8). On
one extreme, a fixed effects (FE) estimation approach could be utilized in which the
time series data for each group is pooled and only the intercepts are allowed to differ
across groups. If the slope coefficients are in fact not identical, however, then the
FE approach produces inconsistent and potentially misleading results. On the other
extreme, the model could be estimated separately for each individual group, and a
simple arithmetic average of the coefficients could be calculated. This is the mean-
group (MG) estimator proposed by Pesaran and Smith (1995). With this estimator,

 =-.23, indicates oil demand moves 
toward long-run equilibrium at a rate of 23% per year. Note the estimated price elas-
ticities are not statistically different from zero. In fact, since the price coefficients are 
so imprecisely estimated, the hypothesis of price symmetry is not rejected5. These 
results exemplify the reason researchers pool data, if possible: there is not enough 
intra-country data variation for precise parameter estimates.

5 The test yields a 

Table 2: Augmented Dickey–Fuller Unit Root Tests

Variable Z(t) p-value

Pmax,t -3.664 0.0047
Prec,t 2.305 0.9990
Pcut,t 0.092 0.9655

critical values
1%: -3.689, 5%: -2.975, 10%: -2.619

Table 3: Im, Pesaran, and Shin Panel Unit Root Tests

Variable Wtbar p-value

yt -1.0459 0.1478
oilt -.5601 0.2877

demeaned, trend included
lag lengths chosen via AIC

4.1 Mean-Group Estimation

The mean-group estimator is the least restrictive of all estimations we consider. Model
(8) is estimated independently for each country via ordinary least squares. The
summary results of the mean-group estimates are presented in Table ??. The country-
specific regression estimates for the mean-group model are listed in Table 5.

The estimated (instantaneous) income elasticity of .636 is quite plausible. Further,
the long-run adjustment parameter, φ=-.23, indicates oil demand moves toward long-
run equilibrium at a rate of 23% per year. Note the estimated price elasticities are not
statistically different from zero. In fact, since the price coefficients are so imprecisely
estimated, the hypothesis of price symmetry is not rejected5. These results exemplify
the reason researchers pool data, if possible: there is not enough intra-country data
variation for precise parameter estimates.

5The test yields a χ2
2 statistic of 1.02. The corresponding p-value is .600. statistic of 1.02. The corresponding p-value is .600.
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Table 1
OECD Country Mean Statistics 

Country
Oil  

Consumption
Real GDP (2006$) Population

Australia  31.62  20,230.15 16,316,271.49 

Austria  11.34  20,564.82  7,765,886.91 

Belgium  27.86  19,128.36  9,973,123.17 

Canada  81.78  20,777.17 26,935,737.46 

Denmark  12.23  21,876.40  5,164,047.06 

Finland  11.21  17,669.87  4,929,411.46 

France  98.27  19,723.86 57,294,371.77 

Germany  136.82  19,797.17 79,676,279.66 

Greece  14.18  11,992.03  9,905,299.89 

Hungary  8.65  9,318.39 10,419,609.57 

Iceland  0.68  20,032.92  247,243.20 

Ireland  5.70  14,418.69  3,487,859.20 

Italy  93.74  17,764.94 56,570,715.43 

Japan  241.96  18,751.73 119,837,178.57 

Korea, South  51.47  8,755.94  41,245,183.86 

Mexico  58.44  6,874.63  79,701,564.94 

Netherlands  37.16  20,271.80  14,718,023.54 

New Zealand  4.94  17,551.91  3,377,838.74 

Norway  9.13  23,651.83  4,215,137.60 

Poland  16.00  6,506.01  36,741,996.60 

Portugal  10.47  12,248.06  9,850,355.97 

Spain  51.66  14,486.69  38,186,561.03 

Sweden  20.20  20,303.75  8,526,435.06 

Switzerland  12.63  25,252.59  6,769,738.29 

Turkey  20.82  4,424.15  52,663,862.60 

United Kingdom  85.84  18,683.08  57,450,871.43 

United States  806.49  25,780.08 246,064,078.23 

Overall  72.64  16,919.89  37,334,617.88 
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Table 2
Augmented Dickey–Fuller Unit Root Tests

Variable Z(t) p-value

Pmax,t -3.664 0.0047 

Prec,t 2.305 0.9990 

Pcut,t 0.092 0.9655 
critical values 1%: -3.689, 5%: -2.975, 10%: -2.619

Table 3
Im, Pesaran, and Shin Panel Unit Root Tests

Variable Wtbar p-value

y1 -1.0459 0.1478

oilt -.5601 0.2877
demeaned, trend included lag lengths chosen via AIC
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Table 4
Estimation Results

Dynamic Fixed 
Effects  Mean Group Pooled Mean 

Group

EC1  -0.0467***  -0.230***  -0.0770*** 

 (0.00801)  (0.0366)  (0.00761) 

ΔPmax,t  -0.0254***  -0.00556  -0.0153*

 (0.00815)  (0.00866)  (0.00852) 

ΔPrec,t  0.0158  -0.00316  -0.00041 

 (0.0198)  (0.0116)  (0.0162) 

ΔPcut,t  0.00142  0.00298  0.000864 

 (0.0154)  (0.0208)  (0.015) 

Δyt  0.524***  0.636***  0.661*** 

 (0.0613)  (0.0958)  (0.095) 

Pmax,t  -0.779***  -0.471  -0.464*** 

 (0.16)  (0.352)  (0.0766) 

ΔPrec,t  -0.556***  -0.182  -0.223** 

 (0.214)  (0.137)  (0.0882) 

Pcut,t  -0.532***  -0.273  -0.267*** 

 (0.147)  (0.198)  (0.0668) 

constant  -0.493***  -2.974***  -0.897*** 

 (0.109)  (0.489)  (0.0875) 

Observations  918  918  918 

R-squared  0.26   

Number of groups  27   
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Table 5
Mean-Group Model Estimates
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Pooled-Mean Group Estimation
Table 4 lists results of the pooled mean-group estimator for model (8). In this 

context, the PMG estimator allows for heterogeneous short-run dynamics and com-
mon long-run price elasticities. The first equation presents the normalized cointe-
grating vector6. The country-specific estimates are listed in Table 6.

Referring to Table 4, the pooled mean-group estimated precisely. The long-
run price elasticities are significantly negative. The estimated long-run price effect 
is asymmetric. The test of price symmetry is 

4.2 Pooled-Mean Group Estimation

Table 4 lists results of the pooled mean-group estimator for model (8). In this context,
the PMG estimator allows for heterogeneous short-run dynamics and common long-
run price elasticities. The first equation presents the normalized cointegrating vector6.
The country-specific estimates are listed in Table 6.

Referring to Table 4, the pooled mean-group estimated precisely. The long-run
price elasticities are significantly negative. The estimated long-run price effect is
asymmetric. The test of price symmetry is χ2

2 = 17.91, with p-value<0.001. Results
indicate demand responds equally to price recoveries and price cuts, but is twice
as responsive to a new historical maximum price (comparing -.223, -.267, and -464,
respectively). The average long-run income elasticity (0.661) is significant, correctly
signed, and in line with previous studies.

A serious potential problem exists, however, with the pooled mean-group estima-
tion. Since the model includes a lagged-dependent variable, there is a possibility of
endogeneity bias in the parameter estimates. The existence of such an endogeneity
problem is tested via the familiar Hausman test. In this context the mean-group
estimator is consistent under both the null and alternative hypotheses. The pooled
mean-group estimator is efficient under the null, but is inconsistent under the alter-
native. The Hausman test statistic is 1.62 with a p-value of 0.6552 which rejects
the presence of endogeneity bias at the traditional levels of significance. This was
to be expected since, in fact, the parameter estimates did not change much between
procedures but the precision increased dramatically.

4.3 Dynamic Fixed Effects

We can further restrict the parameters by imposing complete parameter homogeneity.
Recall the pooled mean-group estimator restricted long-run price responses and speed
of adjustment to be equal across countries yet allowed for country-specific income
responses and short-run adjustments. Under dynamic fixed effects all parameters are
assumed equal across all countries. If dynamic fixed effects does not result in model
misspecification, there are two advantages in such a specification. Firstly, dynamic
fixed effects results in a parsimonious model, which is always preferred. Secondly, if
we expect OECD countries to be a homogeneous group modelling as such is aligned
with our prior.

6The vector has been normalized such that the coefficient on the first term in the cointegrating
vector is 1. Accordingly, the normalized term is omitted from the estimation output.

, with p-value <0.001. 
Results indicate demand responds equally to price recoveries and price cuts, but is 
twice as responsive to a new historical maximum price (comparing -.223, -.267, and 
-464, respectively). The average long-run income elasticity (0.661) is significant, 
correctly signed, and in line with previous studies.

A serious potential problem exists, however, with the pooled mean-group es-
timation. Since the model includes a lagged-dependent variable, there is a possibility 
of endogeneity bias in the parameter estimates. The existence of such an endogene-
ity problem is tested via the familiar Hausman test. In this context the mean-group 
estimator is consistent under both the null and alternative hypotheses. The pooled 
mean-group estimator is efficient under the null, but is inconsistent under the alter-
native. The Hausman test statistic is 1.62 with a p-value of 0.6552 which rejects the 
presence of endogeneity bias at the traditional levels of significance. This was to be 
expected since, in fact, the parameter estimates did not change much between proce-
dures but the precision increased dramatically.

Dynamic Fixed Effects
We can further restrict the parameters by imposing complete parameter homo-

geneity. Recall the pooled mean-group estimator restricted long-run price responses 
and speed of adjustment to be equal across countries yet allowed for country-specific 
income responses and short-run adjustments. Under dynamic fixed effects all param-
eters are assumed equal across all countries. If dynamic fixed effects does not result 
in model misspecification, there are two advantages in such a specification. Firstly, 
dynamic fixed effects results in a parsimonious model, which is always preferred. 
Secondly, if we expect OECD countries to be a homogeneous group modelling as 
such is aligned with our prior.
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Table 6
Pooled Mean-Group Estimates
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Table 4 lists results from dynamic fixed effects. Note all parameters of in-
terest are correctly signed and significantly different from zero. The long-run price 
elasticities have increased in magnitude while the income elasticity has decreased 
in magnitude. Unlike the previous models, the hypothesis of price symmetry is not 
rejected at the 5% level7. The Hausman test statistic is 16.51 which a p-value of 
0.0009. The test of parameter homogeneity across countries is rejected.

The associated p-value of 0.0009 for the Hausman specification test indicates 
the dynamic fixed effects model suffers from endogeneity bias. The bias is a result 
of the constraint that all OECD countries respond identically to income changes8. In 
other words, the Hausman test leads us to the conclusion that the assumption that 
OECD nations share the same short-run dynamics and long-run income elasticity is 
incorrect. Based on this, the dynamic fixed effects model is biased and the results 
should be discarded. 

Conclusion
Using recently developed dynamic panel data techniques we estimated a 

non-structural demand model for OECD nations. According to our analysis, oil 
demand responds asymmetrically to price shocks. Specifically, we observed the 
demand is quite sensitive to new historical maximum prices yet only moderately 
sensitive to price recoveries and cuts. Unlike previous studies, we fail to reject that 
demand responds equally to price recoveries and price cuts. Our results indicate the 
long-run price elasticity for a price maximum is nearly twice as great (-.464) as for 
other price movements (approx. -0.25).

Original models we estimated, but not reported here, imposed the same speed 
of adjustment of oil demand to income shocks as to the price shocks. Doing so re-
sulted in implausibly large income elasticities9. Following Gately and Huntington 
(2002), the results presented in this paper allow oil demand to adjust immediately to 
income shocks. The resulting estimated income elasticity is 0.66

For OECD nations over the period 1970–2004, we conclude all countries 
share a common long-run price elasticity and speed of adjustment to equilibrium. 
With respect to income, each nation responds immediately. Further, we reject the 
hypothesis of income elasticity homogeneity within our sample. 

7 The corresponding p-value is 0.0516.
8 Recall Figure 2 to see why, in fact, that is unlikely.
9 �By implausible we mean greater than unity. We expect income elasticities for OECD countries to be bound 
between 0 and 1. 
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